Alcohol-Specific Parenting and Adolescents’ Alcohol-Related Problems: The Interacting Role of Alcohol Availability at Home and Parental Rules*

REGINA VAN DEN EIJDEN, PH.L.,† DIKE VAN DE MHEEN, PROFESSOR, PH.L.,† RAYMOND VET, M.SC.,† AND AD VERMULST, PH.L.†
Department of Interdisciplinary Social Sciences, Utrecht University, P.O. Box 80.140, 3508 Utrecht, The Netherlands

ABSTRACT. Objective: The first aim of this study was to gain more insight into the bi-directionality between alcohol-specific parental factors (i.e., parents’ alcohol use, alcohol availability at home, parental rule setting, and frequency and quality of communication about alcohol) and adolescents’ alcohol intake and alcohol-related problems. The second aim was to examine the relative impact of alcohol-specific parental factors on adolescents’ alcohol intake and related problems by studying them in a comprehensive model. Method: A two-wave longitudinal study, with a 2-year interval, was conducted among a sample of 537 adolescents (56% girls) ages 12–15 years in The Netherlands. Under supervision of well-instructed teachers, students filled out questionnaires in a classroom setting. Results: The findings show that perceived alcohol availability at home was the only parenting factor predicting an increase in alcohol intake and alcohol-related problems among adolescents 2 years later. Cross-sectional findings, furthermore, suggest that the effect of alcohol availability on adolescents’ alcohol-related problems disappears when adolescents perceive strict alcohol rules. In addition, results indicate that parents respond to their youngsters’ experienced alcohol-related problems by engaging in more rigorous alcohol-specific parenting (e.g., by increasing alcohol-specific rules and decreasing alcohol availability at home). Conclusions: The findings emphasize that parent interventions aiming at the prevention of adolescents’ alcohol use should include the advice to restrict the perceived presence of alcohol beverages at home. Moreover, to prevent alcohol problems, parents should be advised to enforce strict rules about drinking, particularly when a total absence of alcohol at home is not feasible. (J. Stud. Alcohol Drugs, 72, 408–417, 2011)

THE RELATIONSHIP BETWEEN parents’ alcohol use and adolescents’ alcohol intake is well documented (e.g., Andrews et al., 1997; Chassin et al., 1997; Duncan et al., 1996; Engels et al., 1999). Generally, it is thought that this association results from a combination of shared genetics (Koopmans and Boomsma, 1996; Poelen et al., 2008) and parental influences such as modeling by parents (Ary et al., 1993; Zhang et al., 1999). In addition, parental alcohol use is associated with more permissive parenting practices, which in turn may contribute to the development of adolescents’ drinking patterns (van der Vorst et al., 2005; Wood et al., 2004).

A well-documented parenting practice related to adolescent drinking is the enforcement of rules regarding alcohol use, whereby strict rules may help to prevent drinking among youngsters (Ennett et al., 2001; Spijkerman et al., 2008; van der Vorst et al., 2006; van Zundert et al., 2006). Also, parental alcohol use is related to the availability of alcoholic drinks at home (Komro et al., 2007; Maddahian et al., 1986) and may thereby stimulate adolescent drinking. Other alcohol-specific parenting practices, such as the quality and frequency of communication about alcohol use, may influence children’s drinking as well. Cross-sectional research showed a negative association between qualitative good communication about alcohol use (e.g., communication whereby the child feels comfortable and well understood) and adolescent drinking, suggesting that such communication may help to prevent adolescents from drinking (Spijkerman et al., 2008). On the contrary, frequency of communication about alcohol use is positively related to adolescents’ alcohol use (van der Vorst et al., 2005; van Zundert et al., 2006), implying that adolescents drink more in cases of frequent parent–child conversations about alcohol use.

Despite the aforementioned studies, our knowledge on parenting tools preventing adolescent drinking is still limited. Most previous studies used cross-sectional designs and do not provide insight into possible causal mechanisms. In addition, few previous studies were designed to disentangle the relative impact of these parenting factors by testing them in a multifactor model. Such a comprehensive model is required because the various parenting factors are mutually interrelated. As stated before, parental drinking is linked to parental rule enforcement and alcohol availability at home. Moreover, the latter two are notably correlated as well (Spijkerman et al., 2008; van Zundert et al., 2006). As a result,
studies that separately examined the relationship between one or two of these parenting factors and adolescent alcohol use are by definition inconclusive about the strength of the relationships—that is, the links found may also result from associations with related but not included factors (confounders). As far as we know, only two studies addressed parental drinking, parental rules, and alcohol availability simultaneously and have paid attention to the interrelatedness of these concepts (Spijkerman et al., 2008; van Zundert et al., 2006). However, because of their cross-sectional nature, these studies do not provide any insight into causal processes underlying the association between these parenting factors on adolescents’ drinking.

The present study was set up to examine the relative impact of parental drinking, alcohol availability at home, parental rules regarding alcohol use, and frequency and quality of communication about alcohol use in a comprehensive model. Moreover, the present study will examine the bi-directionality of associations between parenting factors and adolescent alcohol use. This is essential because cross-sectional relations may result not only from parenting-induced effects but also from child-induced influences (i.e., behavioral adaptation among parents in response to their children’s drinking). For instance, the positive association found between frequency of communication about alcohol use and adolescents’ drinking (van der Vorst et al., 2005; van Zundert et al., 2006) will be found not only when youngsters start to drink more in response to a high frequency of parental communication about drinking but also when parents start to communicate more about drinking in response to their children’s alcohol use. Indeed, several longitudinal studies provide evidence for parental adjustment once children engage in drinking behavior (Otten et al., 2008; Stice and Barrera, 1995; van der Vorst et al., 2006). The aim of the present study, therefore, was to extend current knowledge on singular and mutual causal processes relevant for parental alcohol prevention practices.

In sum, the present longitudinal study was conducted for the following reasons: (a) to gain more insight into the relative impact of important alcohol-specific parenting factors in preventing adolescent drinking and (b) to test the bi-directionality of associations between these factors and adolescent alcohol use. Because few studies have addressed problematic drinking patterns among youngsters, we focused on alcohol-related problems as well as on actual alcohol use. Finally, because the impact of maternal and paternal parenting practices may differ (Harakeh et al., 2010), we tested these associations separately for the father and the mother.

Method

Procedure and sample

The first measurement, which was set up as a cross-sectional study, was conducted among 5,334 students (12–17 years) and their parents. The selection of schools was based on representative data about the distribution of Dutch schools with regard to school level (vocational training vs. high school or pre-university training), region in The Netherlands (north, east, south, west urban, west nonurban), and urbanization rate (1 [nonurban] to 5 [highly urban]) (Centraal Bureau voor de Statistiek, n.d.). In The Netherlands, education is compulsory for students ages 16 years or younger. To reach the 17-year-old students, we included schools for professional education as well. In total, 13 high schools and 3 schools for professional education participated in the first measurement.

School boards were asked to select two classes from each school year and from each school level for participation in this study. A letter was sent to the parents of the participants that asked for their passive informed consent. In addition, one of the parents was asked to fill out a short questionnaire that included questions about socioeconomic status. Among students, written questionnaires were administered in a classroom setting, under supervision of a well-instructed teacher.

Two years later, three of the participating high schools were approached for a second measurement. At these three schools, 801 students were in a grade that could be reached for the second measurement 2 years later (i.e., the 7th and 8th grade of vocational training, the 7th to 9th grade of high school, and the 7th to 10th grade of pre-university training). This sample was representative with regard to school level (vocational training vs. high school or pre-university training) but not with regard to region and urbanization rate. All three schools were situated in region west nonurban in The Netherlands. At the second measurement, 537 students of the original sample were reached (a 67% response rate). Nonresponse of students was mainly the result of school boards excluding whole classes because participation was impossible (e.g., illness of teacher) or would cause inconvenience (e.g., students busy preparing for a school exam). In addition, a number of students had left school early or were absent on the day of the second measurement. A total of 368 parents (accounting for 69% of the participating students) filled out the short parent questionnaire.

More girls (56%) than boys (44%) participated in both measurements. The mean age of respondents was 13.4 years at Time 1 (T1). Of the students, 52% were in vocational school, 22% were in high school, and 26% were in pre-university training. Most students (76%) were of Dutch ethnicity.

An attrition analysis was conducted to test whether respondents in the final sample (n = 537) differed from respondents who were lost to follow-up (n = 264). The final sample was somewhat younger (odds ratio [OR] = 0.48, p < .001, 95% CI [0.45, 0.52]) and more often had a minority ethnic background (OR = 1.10, p < .05, 95% CI [1.01, 1.20]) (Nagelkerke $R^2 = .019$). No differences were found for gender, education level, weekly alcohol use, or alcohol-related problems.
Measures

Except for the indicators of socioeconomic status (educational level and family income), which were included in the questionnaire for the parents, all measures of alcohol-specific parenting practices were included in the student questionnaire at T1 and Time 2 (T2).

Adolescents’ alcohol use. For the assessment of adolescents’ alcohol use, we used the quantity–frequency index. We asked adolescents how many weekdays and weekend days they usually consumed alcohol and how many glasses they usually drank per occasion. We calculated the quantity–frequency index by taking the product of the frequency of drinking and the number of glasses consumed and summing the two products for weekdays and weekend days (Knibbe et al., 1991; Monshouwer et al., 2004).

Alcohol-related problems. To assess whether adolescents experienced problems related to alcohol use, the Rutgers Alcohol Problem Index (RAPI) was used. The RAPI is an 18-item scale addressing the possible negative consequences of drinking (White, 1987; White and Labouvie, 1989). Adolescents were asked to indicate how often they had experienced a particular consequence or situation as a result of (excessive) alcohol use, such as, “Because of drinking I could not do my homework” or “I had the feeling that I needed more alcohol than in the past to have the same effect.” Answers were given on a 5-point scale ranging from 0 (never) to 4 (very often). The mean score on the total scale was used as an indicator of the degree of alcohol-related problems. High scores implied higher levels of alcohol-related problems. Cronbach’s α was .73 at T1 and .84 at T2.

Parents’ alcohol use. Adolescents were asked about the alcohol use of both their mother and their father by using the same quantity–frequency index distinguishing between weekdays and weekend days (Knibbe et al., 1991; Monshouwer et al., 2004).

Alcohol-specific rule enforcement. The measure to assess parental rules regarding alcohol use was based on a 10-item scale developed by van der Vorst et al. (2005). The scale measures to what extent parents permit their children to drink alcohol in various situations, such as “at home together with parents,” “at home in the absence of parents,” or “whether the child is allowed to come home drunk.” Adolescents could answer on a 5-point scale ranging from 1 (certainly) to 5 (certainly not). The mean score on the total scale was used as an indication of alcohol-specific rule enforcement. High total sum scores implied that parents enforced stricter rules regarding alcohol use. Cronbach’s α was .93 at T1 and .94 at T2.

Alcohol availability at home. We used a five-item scale assessing how often parents have beer, wine, strong distilled spirits, and mixed drinks available at home (van Zundert et al., 2006). Answering categories ranged from 1 (never) to 5 (always). The mean score on the total scale was used as an indication of the availability of alcoholic beverages at home. High scores indicated high availability of alcoholic beverages at home. Cronbach’s α was .85 at both T1 and T2.

Frequency of communication with parents. Frequency of alcohol-specific communication with parents was measured with six items. These items were derived from an eight-item scale developed by Ennett et al. (2001) and translated by van der Vorst et al. (2005). Adolescents were asked how often in the past 12 months they had talked with their mother or father about several issues regarding alcohol use, such as “whether or not they are drinking,” “the amount of alcohol they drink,” “what they like about drinking,” “the risks of drinking,” “how much friends are drinking,” and about “getting or being drunk.” These issues were asked separately for communication with the mother and the father. Answers ranged from 1 (never) to 5 (very often). The mean score on the total scale was used as an indicator of frequency of communication with parents about drinking (i.e., high scores indicated more frequent communication with parents). Cronbach’s α were .83 and .88 for the mother and .88 and .92 for the father.

Quality of communication with parents. The measure for quality of communication with parents about alcohol-related issues was an adapted version of a measure to assess quality of communication about smoking (Harakeh et al., 2005). The scale consisted of six items. The first four items asked, “When my mother (father) and I are talking about alcohol use...” (a) “I feel comfortable,” (b) “I feel understood,” (c) “I feel taken seriously,” and (d) “I find my mother (father) unfair.” The last two items were (e) “My mother (father) and I are interested in each other’s opinion about alcohol use” and (f) “My mother (father) and I are talking easily about our opinions regarding alcohol use.” Answers were given on a 5-point scale ranging from 1 (not at all) to 5 (very much). The fourth item was recoded. The mean score of the total scale was used as an indicator of the quality of communication. High scores indicated that the quality of communication with parents was perceived as high. Cronbach’s α were .72 and .82 for the mother and .79 and .87 for the father.

Strategy of statistical analyses

Means, standard deviations, and correlations between the relevant variables are first described. Next, the associations between alcohol-specific parenting factors and adolescents’ alcohol use and alcohol-related problems were examined both cross-sectionally (at T1 and T2) and longitudinally. Demographic variables (education level of parents, family income of parents, and gender, age, ethnic background, and educational level of the child) were included as distal variables. The longitudinal model tested the impact of the different alcohol-specific parenting factors at T1 on the adolescents’ alcohol variables at T2 while controlling for the specific alcohol variable at T1. The model was tested with
Mplus Version 4.2 (Muthén and Muthén, 1998–2006), using the full-information maximum likelihood estimator to deal with missing values. The percentage of missing values varied between 0% and 4% in the whole longitudinal sample.

Because alcohol use distribution was very skewed, a logarithmic (ln-) transformation—in fact, ln(1 + number of glasses) because ln(0) does not exist—was applied to get satisfactory values for skewness and kurtosis. After transformation, these values were 1.1 and 2.2 at T1 and .50 and -.36 at T2 for children and varied from -0.04 to .50 (skewness) and from -.85 to -.35 (kurtosis) for parents. All these values were very acceptable for using a full-information maximum likelihood estimator (Finney and DiStefano, 2006).

Alcohol-specific rules, alcohol availability at home, and the two communication variables (Table 2) were treated as latent variables. Because the number of parameters to be estimated in the model presented in Figure 1 would increase rapidly by using items as indicators for the latent variables, we decided to use two parcels as indicators for each of the latent variables. The items of each concept were split into two equivalent parts (parcels) (see also Bandalos and Finney, 2001, and Nasser and Wisenbaker, 2006, about the use of parcels). To avoid under-identification of the measurement part of the structural equation models and to get stable results, the variances of the latent variables were fixed to 1 and the two factor loadings were estimated freely but constrained to be equal. The factor loadings of the latent variables of the 12 regression models and the below-mentioned two cross-lagged models were mostly above .80, indicating that the parcels adequately represented the latent variables.

Two fit measures were used, as recommended by several authors: (a) the root mean square error of approximation (RMSEA) (Byrne, 1998; Kaplan, 2000) and (b) the comparative fit index (CFI) of Bentler (Kaplan, 2000; Kline, 1998). RMSEA values of less than or equal to .05 are preferred, but those lower than .08 are acceptable, and CFI values above .95 (.90) are indicative of a fair (acceptable) fit.

Finally, two cross-lagged panel models (one for mothers and one for fathers) (Finkel, 1995) were tested using MPlus, whereby all T2 variables (i.e., parenting variables and alcohol outcomes of the child) were predicted from all T1 variables in one single model. The aim of this cross-lagged analysis was to determine which cross-relations are predominant (Finkel, 1995). The cross-lagged analysis was performed with parents’ education level and family income and child’s gender, age, ethnic background, and educational level at T1 as control variables.

Results

Descriptives

Table 1 presents the means, standard deviations, and correlations between alcohol-specific parenting factors and alcohol use and alcohol-related problems among adolescents at T1 and T2. On average, respondents were drinking 3.2 glasses of alcohol during a regular week at T1, and 7.4 glasses during a regular week at T2. Alcohol-related problems increased from a mean of 1.1 (SD = 1.9) at T1 to 1.8 (SD = 2.7) at T2.

At T1, 59 respondents (17%) did not drink alcohol during

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1.93</td>
<td>1.65</td>
<td>3.56</td>
<td>3.47</td>
<td>6.31</td>
<td>10.08</td>
<td>3.31</td>
<td>2.64</td>
<td>7.40</td>
<td>1.78</td>
<td>7.40</td>
<td>1.78</td>
</tr>
<tr>
<td>SD</td>
<td>0.80</td>
<td>0.81</td>
<td>0.85</td>
<td>0.94</td>
<td>7.86</td>
<td>10.76</td>
<td>1.12</td>
<td>1.00</td>
<td>11.56</td>
<td>2.70</td>
<td>11.56</td>
<td>2.70</td>
</tr>
<tr>
<td>Freq. com. mother</td>
<td>1.62</td>
<td>0.66</td>
<td>.39</td>
<td>.68</td>
<td>.25</td>
<td>.17</td>
<td>-.06*</td>
<td>-.08*</td>
<td>-.13</td>
<td>.06*</td>
<td>.19</td>
<td>.18</td>
</tr>
<tr>
<td>Freq. com. father</td>
<td>1.47</td>
<td>0.68</td>
<td>.72</td>
<td>.33</td>
<td>.26</td>
<td>.27</td>
<td>-.06*</td>
<td>-.08*</td>
<td>-.10*</td>
<td>.13</td>
<td>.15</td>
<td>.11*</td>
</tr>
<tr>
<td>Qual. com. mother</td>
<td>3.27</td>
<td>0.88</td>
<td>.29</td>
<td>.25</td>
<td>.44</td>
<td>.66</td>
<td>-.20</td>
<td>-.23</td>
<td>-.03*</td>
<td>-.04*</td>
<td>-.22</td>
<td>-.19</td>
</tr>
<tr>
<td>Qual. com. father</td>
<td>3.23</td>
<td>0.96</td>
<td>.16</td>
<td>.30</td>
<td>.68</td>
<td>.48</td>
<td>-.25</td>
<td>-.13*</td>
<td>-.10*</td>
<td>.01*</td>
<td>-.16</td>
<td>-.17</td>
</tr>
<tr>
<td>Alc. use mother</td>
<td>6.00</td>
<td>8.40</td>
<td>.06*</td>
<td>.07*</td>
<td>-.16</td>
<td>-.05*</td>
<td>.47</td>
<td>.54</td>
<td>-.19</td>
<td>.26</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td>Alc. use father</td>
<td>10.32</td>
<td>12.58</td>
<td>.03*</td>
<td>.01*</td>
<td>-.18</td>
<td>-.16</td>
<td>.39</td>
<td>.61</td>
<td>-.21</td>
<td>.22</td>
<td>.27</td>
<td>.26</td>
</tr>
<tr>
<td>Rules alcohol</td>
<td>4.08</td>
<td>0.88</td>
<td>-.28</td>
<td>-.24</td>
<td>-.05*</td>
<td>-.01*</td>
<td>.39</td>
<td>.61</td>
<td>-.21</td>
<td>.22</td>
<td>.27</td>
<td>.26</td>
</tr>
<tr>
<td>Alc. availab.</td>
<td>2.46</td>
<td>0.96</td>
<td>.12</td>
<td>.10</td>
<td>.02*</td>
<td>.04*</td>
<td>.19</td>
<td>.19</td>
<td>-.48</td>
<td>.68</td>
<td>.15</td>
<td>.14</td>
</tr>
<tr>
<td>Alc. use child</td>
<td>3.17</td>
<td>7.35</td>
<td>.21</td>
<td>.19</td>
<td>-.17</td>
<td>-.10*</td>
<td>.21</td>
<td>.19</td>
<td>-.49</td>
<td>.17</td>
<td>.50</td>
<td>.59</td>
</tr>
<tr>
<td>Alc. prob. child</td>
<td>1.10</td>
<td>1.90</td>
<td>-.03*</td>
<td>.07*</td>
<td>.37</td>
<td>.28</td>
<td>.19</td>
<td>.21</td>
<td>-.35</td>
<td>.18</td>
<td>.49</td>
<td>.39</td>
</tr>
</tbody>
</table>

Notes: Statistics below the diagonal are for Time 1. Statistics above the diagonal are for Time 2. Statistics at the diagonal (bold) are correlations between Time 1 and Time 2. Freq. com. = frequency of communication; qual. com. = quality of communication; alc. = alcohol; availab. = availability; prob. = problems; * = not significant.
a regular week, and at T2, 25 respondents (7%) did not drink alcohol during a regular week. Weekly drinking respondents were drinking 3.8 glasses of alcohol during a regular week at T1 and 8 glasses of alcohol during a regular week at T2. Among these weekly drinkers, alcohol-related problems increased from a mean of 1.3 (SD = 2.0) at T1 to 1.9 (SD = 2.8) at T2.

Correlations between alcohol-specific parenting factors and adolescents’ alcohol use and related problems

The correlations show that all alcohol-specific parenting factors were significantly related to adolescents’ alcohol use at T1 and T2, except for quality of communication by the father at T1. Moreover, all parenting factors showed significant correlations with adolescents’ alcohol-related problems, except for frequency of communication by the mother and the father at T1 and frequency of communication by the father at T2.

The (bold) figures at the diagonal are the correlations of the variables at T1 with the corresponding ones at T2. Except for frequency of communication of the father, all these correlations are .40 or higher, indicating that all parenting factors, alcohol use, and alcohol-related problems are rather stable constructs.

Prediction of adolescents’ alcohol use

Table 2 shows the standardized regression weights for the models of the mother and the father. For both parents, two cross-sectional models (for T1 and T2) and one longitudinal model (which controlled for adolescents’ alcohol use at T1) are presented. All the models showed acceptable RMSEA values (lower than .08) and acceptable CFI values (above .90).

As was hypothesized, both cross-sectional mother models predicting alcohol use showed that quality of communication and alcohol rules were negatively related to adolescents’ alcohol consumption, whereas frequency of communication about alcohol was positively related to adolescents’ alcohol intake. The longitudinal model, however, showed a significant beta only for alcohol availability.

The cross-sectional models for the father predicting alcohol use also showed significant negative associations for alcohol-specific rules. At T2, a significant negative association was found for quality of communication, and a

Table 2. Associations between alcohol-specific parenting factors and adolescents’ alcohol variables, and model fit measures for all 12 models

<table>
<thead>
<tr>
<th>Alcohol-specific parenting factors</th>
<th>Model mother</th>
<th>Model father</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1</td>
<td>T2</td>
</tr>
<tr>
<td>Weekly alcohol consumption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency of communication, β</td>
<td>.23</td>
<td>.34</td>
</tr>
<tr>
<td>Quality of communication, β</td>
<td>-.27</td>
<td>-.34</td>
</tr>
<tr>
<td>Alcohol use of parents, β</td>
<td>.10</td>
<td>.19</td>
</tr>
<tr>
<td>Alcohol-specific rules, β</td>
<td>-.38</td>
<td>-.42</td>
</tr>
<tr>
<td>Alcohol availability at home, β</td>
<td>.07</td>
<td>-.01</td>
</tr>
<tr>
<td>Alcohol consumption of child T1, β</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>.43</td>
<td>.44</td>
</tr>
<tr>
<td>Fit measures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d²</td>
<td>148.01</td>
<td>98.42</td>
</tr>
<tr>
<td>df</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>p</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>CFI</td>
<td>.939</td>
<td>.966</td>
</tr>
<tr>
<td>RMSEA</td>
<td>.060</td>
<td>.043</td>
</tr>
<tr>
<td>Alcohol-related problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency of communication, β</td>
<td>.45</td>
<td>.35</td>
</tr>
<tr>
<td>Quality of communication, β</td>
<td>-.14</td>
<td>-.24</td>
</tr>
<tr>
<td>Alcohol use of parents, β</td>
<td>.08</td>
<td>.12</td>
</tr>
<tr>
<td>Alcohol-specific rules, β</td>
<td>-.21</td>
<td>-.18</td>
</tr>
<tr>
<td>Alcohol availability at home, β</td>
<td>.18</td>
<td>.12</td>
</tr>
<tr>
<td>Alcohol problems of child T1, β</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>.40</td>
<td>.25</td>
</tr>
<tr>
<td>Fit measures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d²</td>
<td>158.27</td>
<td>107.77</td>
</tr>
<tr>
<td>df</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>p</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>CFI</td>
<td>.932</td>
<td>.958</td>
</tr>
<tr>
<td>RMSEA</td>
<td>.064</td>
<td>.046</td>
</tr>
</tbody>
</table>

Notes: The tested models also included parents’ education level and family income parents and child’s gender, age, ethnicity, and education level. The bold figures are significant with at least p < .05. T1 = Time 1; T2 = Time 2; CFI = comparative fit index; RMSEA = root mean square error of approximation.
significant positive association was seen for frequency of communication. The longitudinal model did not yield any significant associations with parenting variables.

Prediction of alcohol-related problems

Both cross-sectional models for the mother predicting alcohol-related problems showed significant negative betas for alcohol rules and significant positive betas for frequency of communication. In addition, a significant positive association was found for alcohol availability at T1, and a significant negative association was seen for quality of communication at T2. The longitudinal model showed a significant positive beta for alcohol availability.

The cross-sectional models for the father showed significant negative betas for alcohol-specific rules and significant positive betas for frequency of communication. Furthermore, at T2 a significant negative beta was found for quality of communication. Finally, the longitudinal model showed a significant positive beta for alcohol availability.

In addition, we tested whether alcohol availability might have a nonlinear relationship with alcohol-related problems. More specifically, we tested quadratic or cubic relationships between alcohol availability and alcohol use and between alcohol availability and alcohol problems for the 12 Mplus models depicted in Table 2. First, a linear relationship was tested; in the second step, a quadratic relationship was tested; and in the third step, a cubic relationship was tested. The quadratic and cubic associations did not show significant improvements in model fit. Therefore, we conclude that these associations are still predicted best by a linear relationship.

Bi-directionality between alcohol-specific parenting factors and adolescents’ alcohol use and alcohol problems

The results of the two cross-lagged panel models (one for mothers and one for fathers) simultaneously testing the directionality of the two opposite pathways between parenting factors and adolescents’ alcohol use or alcohol-related problems are described in Figure 1. These analyses yielded two significant pathways from the parenting factors to the alcohol variables of the child, namely from alcohol availability at home at T1 to adolescents’ alcohol consumption at T2, as well as to adolescents’ alcohol-related problems at T2.

![Figure 1. Cross-lagged model predicting alcohol use variables of the child at Time 2 (T2) from alcohol-specific parental factors at Time 1 (T1) and predicting alcohol-specific parental factors at T2 from alcohol use variables of the child at T1. The figures between brackets are for the father model. *p < .10; **p < .05; ***p < .01; ****p < .001.](image-url)
With regard to the opposite pathways, the findings demonstrated three significant paths from adolescents’ alcohol-related problems to parenting factors. A negative path was found from alcohol-related problems of the child at T1 to quality of communication at T2 and to alcohol availability at home at T2 (although only marginally significant for the mother model). In addition, a positive pathway was found from alcohol-related problems of the child at T1 to alcohol-specific rules at T2. These results indicate that availability of alcoholic drinks at home increases the alcohol intake of adolescents, as well as the risk of developing alcohol-related problems. Moreover, the findings suggest that alcohol-related problems of the child lead to more rigorous parenting behavior (i.e., to stricter parenting rules regarding alcohol use, to a decrease in availability of alcoholic beverages at home, and to a lower quality of communication about alcohol).

In addition, several pathways were found from alcohol-specific parental factors at T1 to other alcohol-specific parenting factors at T2. First, alcohol availability at T1 predicted an increase in frequency of communication about alcohol by the father at T2 and alcohol use of the mother at T2. Moreover, in the father model, quality of communication at T1 predicted an increase in frequency of communication about alcohol use.

Moderating role of alcohol rules on the relationship between alcohol availability and the alcohol variables: Additional analyses

Because the present findings indicate that alcohol availability at home is a more important predictor than alcohol rules (whereas previous studies emphasized the importance of parental rules), we wondered whether rules moderate the found relationships between alcohol availability at home and adolescents’ alcohol consumption and alcohol-related problems. Therefore, we conducted 12 additional analyses testing interaction effects between alcohol availability and alcohol rules in predicting adolescents’ alcohol consumption and alcohol-related problems (for both the father and the mother model and both cross-sectionally and longitudinally). Two analyses generated significant interaction effects, namely the interaction between alcohol rules and alcohol availability at T2 on alcohol-related problems at T2 for both the mother model (β = -.098, p = .020) and the father model (β = -.116, p = .006). As can be seen in Figure 2, alcohol availability is positively related to adolescents’ alcohol problems when parental rules regarding alcohol use are rather lenient (low- or moderate-level parental rules) but not when parents enforce strict rules about drinking (high-level parental rules).

Discussion

The present longitudinal study assessed the long-term effects of alcohol-specific parenting factors on adolescents’ alcohol use and alcohol-related problems as well as the bidirectionality of the relationship between parenting factors and adolescents’ alcohol use and alcohol-related problems. The findings of the longitudinal analyses point at one factor in particular as being predictive of both adolescents’ alcohol use and alcohol-related problems, namely the availability of alcohol beverages at home. These findings indicate that the adolescents’ perceived availability of alcoholic drinks at home, more than other perceived alcohol-specific parenting factors, predicts an increase in alcohol intake and in experienced alcohol-related problems 2 years later. Furthermore, additional analyses suggest that the impact of perceived alcohol availability at home on adolescents’ alcohol-related problems is prevented when adolescents perceive strict parental alcohol rules. As far as we know, this is the first study testing the longitudinal effect of alcohol availability within a comprehensive model of alcohol-specific parenting factors.

This study also provided key information on the influence of adolescents’ alcohol use and alcohol problems on alcohol-specific parenting and indicated that adolescents’ alcohol problems predict a decrease in the perceived alcohol availability at home and an increase in perceived alcohol-specific rule enforcement 2 years later. These findings indicate that parents respond to their children’s alcohol problems by displaying stricter alcohol-specific parenting practices. This notion is in line with a third finding showing that adolescents’ alcohol problems reduce the perceived quality of parental communication about alcohol use 2 years later. This finding may indicate that parents respond to their children’s alcohol problems by engaging in less constructive com-
munication about alcohol use. These are noteworthy results because previous studies mainly indicated that adolescents’ drinking affects parental response in terms of loosening efforts of control and monitoring (Stice and Barrera, 1995; van der Vorst et al., 2006).Apparently, parents become more tolerant toward alcohol use when their children have started drinking, but parents want to regain control over their children’s drinking once they suspect or observe alcohol-related problems.

The fact that no direct longitudinal effects of perceived parental rules (which can be communicated explicitly or enforced more implicitly by parents—for instance, when parents emit a certain naturalness about what is acceptable and what is not) are found is to a large extent in agreement with previous research. Perceived alcohol rules primarily seem to lower the chance of drinking among youngsters who have not yet started to drink (van der Vorst et al., 2006, 2007) and possibly among youngsters who drink one or two glasses a week (van der Vorst et al., 2009). Evidence for the effectiveness of perceived alcohol rules among adolescents who drink more than two glasses a week, however, is lacking. The present study, with an average drinking level of 3.2 glasses a week at T1 and 7.4 glasses at T2, indicates that perceived alcohol availability at home is a more relevant factor. In this regard it is important to note that alcohol availability at home, rather than alcohol rules, is an inevitable and constant, visually present parenting factor and probably more difficult to avoid. Nevertheless, the present findings also suggest that perceived alcohol rules remain important once adolescents have started drinking, because the impact of perceived alcohol availability at home on adolescents’ alcohol problems seems to disappear when adolescents perceive strict rules regarding alcohol use.

The finding that cross-sectional models did not generate significant effects for perceived alcohol availability can probably be explained by the interrelatedness of the predictor variables. In particular, alcohol rules and alcohol availability are highly correlated, both in the present study and in previous research (Spijkerman et al., 2008; van Zundert et al., 2006). It seems that the cross-sectional associations between perceived alcohol availability and adolescents’ alcohol use and alcohol problems are suppressed by perceived alcohol rules.

In line with previous studies, cross-sectional findings showed a negative association between qualitatively good communication about alcohol use and adolescents’ drinking and alcohol-related problems, as well as a positive association between frequency of alcohol communication and adolescents’ drinking (van der Vorst et al., 2005; van Zundert et al., 2006). With regard to the latter counterintuitive result, unfortunately, the present longitudinal analyses did not add to our knowledge about the underlying causal processes. However, a recent longitudinal study by van der Vorst et al. (2010) provided more insight into the mechanisms underly-
only indirectly related to adolescents’ alcohol use through alcohol-specific rule enforcement and that parental support was unrelated to adolescents’ alcohol use.

Fourth, the lack of a time frame in the measurement of alcohol use (both parent and adolescent use) limits the interpretation of causality, because it cannot be determined from the measure when the alcohol use occurred. Although this reduces the ability to state that parenting came before alcohol use or vice versa, it should be noted that the time interval of 2 years between the two measurements and the relatively young age of adolescents at T1 (M_{age} = 13.4 years) is in favor of our interpretation of the sequence of events. Finally, although we did not find any influences of parental drinking on children’s alcohol use and related problems, we cannot rule out possible effects of genetic similarities between the parents and the children.

Practical implications

This study generated substantial evidence that perceived alcohol availability at home is a risk factor for adolescents’ subsequent alcohol use and alcohol-related problems. In addition, this study suggests that experienced parental rules regarding alcohol use can prevent the development of alcohol-related problems when alcohol is present at home. Until now, adolescents’ perceived alcohol availability at home has hardly been a focus of attention in preventive interventions aiming at parents. The present findings emphasize that parental interventions aimed at the prevention of adolescents’ alcohol use should include the advice to restrict the perceived availability of alcoholic drinks at home and, furthermore, to set strict rules regarding alcohol use, particularly when a total absence of alcoholic drinks at home is not feasible.

Acknowledgments

We thank Annemarie Huiberts and Rob Bovens for facilitating the data collection for the present study.

References

